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We consider the two-dimensional classical jellium with periodic boundary 
conditions and with translation invariance broken by an external periodic 
localizing one-body potential. Using a refinement of Mermin's argument, we 
show that a symmetry breakdown of translation invariance (appearance of a 
crystalline phase with positional long-range order) does not occur, if the correla- 
tion function h(r) decays faster than 1/r 2 as r-~. oe. 
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1. I N T R O D U C T I O N  

In recent papers, (z3) the origin Mermin argument ( ~ has been redefined and 
adapted to investigate the problem of absence of long-range crystalline 
order in the u-dimensional one-component  plasma (jellium with long-range 
Coulomb interaction. In a first refined formulation of Mermin's idea, it was 
shown by Baus (2) that Mermin's  argument is inconclusive for the u- 
dimensional genuine one-component  plasma (with l,-dimensional Coulomb 
potential) and for the two-dimensional surface plasma (two-dimensional 
model with 1 / r  potential). For the latter system Alastuey and Jancovici, (3) 
using a modification of Mermin's  argument, proved that the positional 
order may be destroyed by the transversal phonons. In this note we 
combine these methods and get a result concerning the absence of long- 
range positional order in the genuine two-dimensional jellium with long- 
range two-dimensional logarithmic Coulomb potential. For this model and 
for the two-dimensional surface plasma, recent computer experiments (4'5) 
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indicate that there may exist a "fluid-solid" transition at sufficiently low 
temperature (i.e., in the range 7/> e 2 / k T ~ 1 3 0 - 1 4 0 )  �9 This situation is 
analogous to the one discussed earlier through computer experiments in the 
three-dimensional case. In this region the radial correlation function seems 
to decay much slower than in the fluid phase and shows a typical solidlike 
structure, with peak positions corresponding to characteristic distances of 
the triangular lattice. 

In investigating the region of absence of a crystalline order, attention 
should be payed to the breaking of translation invariance of the Hamilto- 
nian at finite volume due to the various relevant boundary conditions. The 
situation is here analogous to the Ising model on a lattice, where in order to 
prove or disprove a symmetry breakdown of the state at low temperature 
(existence of a spontaneous magnetization), the Hamiltonian should be 
broken either by imposing some boundary conditions outside a finite box A 
(+  or - boundary conditions corresponding to the two pure phases) or 
either by introducing a small external magnetic field h ) 0 at every lattice 
point, computing the magnetization, and removing the field afterwards. 

For the two-dimensional jellium, a natural boundary condition, called 
a Dobrushin boundary condition for the jellium, is given by putting a fixed 
crystalline configuration of charges with background, outside the vessel 
A c ~2; this was introduced recently in the investigation of the uniqueness 
of the free energy density; (6) as mentioned above, another way to break the 
translation invariance consists in introducing an external localizing one 
body potential aCPext(X), a < 0, with peaks at the sides of a given lattice and 
letting a ~ 0 afterwards. Here we confine ourselves to this second alterna- 
tive and show in Section 2 that for the two-dimensional jellium if the net 
pair correlation function h(r) decays faster than or at equal speed as 1 / r  2, 
as r ~ m, then no positional long-range order will persist in the system. 

2. THE MODEL 

Let (a~,a2) be the generators of a Bravais lattice ~_2 and let A = {x 
E R2; ' x = Lxla 1 + Lx2a 2 0 ~< xl < 1, 0 < x 2 < 1}. Let us consider in A a 
system of N classical point particles of charge + e and a neutralizing 
background described by a uniform charge density p = - ( N / I A ] ) e ,  inter- 
acting through a two-body potential qOA(X,y ). The Hamittonian of the 
system (the jellium) is then given by 

N 
HA(X 1 . . . . .  XN) = e 2 E t P A ( X j , X i ) -  ep ~,, ~dYCpA(xi,y ) 

i<j i=l  JA 

1 
+ 2 ~ [~ • (1) 
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We now choose q~a(x, y) to be the kernel of the inverse of - A  on /72(A) 
with periodic boundary  conditions, where s is the or thogonal  comple- 
ment  in L2(A) of the constant  functions. In Fourier  representation 

eik(x-Y) 1 (2) 
% x ( x ' Y ) -  IA[ k~O 

k= (2~r/L)(L2) * 

where ([1_2) * is the reciprocal lattice. 
With this choice of q0A(x, y), H A becomes 

HA(x I . . . .  , XN) = e 2 ~ ~A(Xi, xj) (3) 
i<j  

We want  to consider perturbat ions of H A by means of an external localiz- 
ing field 0~ext(X), X ~ ~2. 

Then 

N 
H~(Xl . . . .  , XN) = e2 2 ~A(Xi 'X  j) '{- 0( 2 q0ext(Xi) (4) 

i<j  i= 1 

Here %xt is assumed to be a smooth positive function invariant under  
translations of the lattice ~_2 and well localized a round the sites in 0_ 2, where 
it obtains its maximum;  a is an arbitrary negative constant.  Following 
Alastuey and Jancovici  (3) we now define for an arbitrary fixed vector 

e, ~ R 2, le,[-- 1 and k E (2~r/L)(k2)*;  K E 2rr(k2) * 

N 
A ( x l , . . . ,  XN) = ~ @(Xi), I~(X) = e i(K+k)x -- ~K+k 

i=1 (5) 
3 w = 1 if K' = 0 

3ic = 0 otherwise 

and 

N 
B(x ,  . . . . .  X~v) = ~,, exp[ /~H~(x  1 . . . .  , XN) ] 

i=1 

• (V,,{ ~ ( x i ) e x p [ -  flH~.(x I . . . . .  XN)]} ) 

cp (x) = e i~ (6) 

Here  V,, denotes the gradient et �9 Vx, with respect to xi in the direction e,. 
The  Schwarz inequal i ty  with respect  to the Gibbs  measure  ( f ) ~  = 
f A(e-~UX/ Z~)f dxl . . . . .  dx z gives 

(]A[2)e, >/ I ( A * B )  2 
(IBIZG (7) 
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Using the definition of t) and q0 and the periodic boundary conditions on 
~0A(X, y), the above inequality reads (see for details Ref. 3) 

[(K + k)" e,] 2. [pKI 2 

S(K + k) >/ (k-e,)  2 + Dtt(k ) (8) 

where 

1 (ei(K+k)xj- ~K+k) S ( K + k ) =  ~ j=l 

is the structure factor, 

oK = E 
j=l  a 

the Fourier transform of the one particle density and 

Dtt(k) = N1 ,( 2i,j eik(xi-xJ)vti7tjHA> a + ~176 = I1'5(k) + I2'A(k) 

It iS clear that aI2, (k) vanishes if we take the limit AI"~ 2 and a - )  0 in the 
stated order. As for the first term I1,A(k) we rewrite it as follows: 

1 (  eik(x~-x)vtVgHA > I,,A( k ) =  ~ E.. 
t,J a 

p ~ O  i , j  a 

Since S(p) = 1/N([~(eipXj- 6p)12>~, we obtain 

(p.  et) 2 
I,.A(k) = ~ p~o p2 [ ( S ( p -  k ) -  1) - (S(p) - 1)] 

+ f l  ~ (P" e,) 2 

We now choose e t such that e t �9 k = 0. Thus Vk ~ (2~r/L)(L2) * 
l,,A(k) = /i,A(k) =/~ps - coskr)V,% (n (9) 

where oh(r) = F(h(p) = S(p) - 1) and h(p = 0) = - 1. 
As noted in (2) Eq. (9) differs from the corresponding quantity 

considered by Mermin because of the appearance of h(r) in it instead of the 
total correlation function g ( r )=  1 + h(r). 
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It is easy to see now that for r fixed independent of A, 

1_1 2 ( r )  ~< C3 + C4 IV,  A(r) l 
L2 Z 7 L 

for positive constants C 3 and Ca independent of L, where C o is the unit cell 
of (U_2). The first equality follows from the definition of epa(r ) and the 
inequality from the fact that q0a= c0(r) - lnlr I is a harmonic function in C 0. 

We now make the following assumption: there exists positive constants 
r 0, C 1 , C 2, independent of L, for L sufficiently large, such that 

[hA(r)[ ~< ClVlrl -<< ro, [hA(r)[ -<< Vlrl > ro (10) 

Using this assumption we can now easily estimate limitA~R2Ii,A(k ) by 

lira Ii,A(k) < -- Csk21nk 
A~'R 2 

for [k] sufficiently small, C 5 > 0. Then with (8) we have Vk E (2~r/L)([_2) * 
that 

(K.  et)210K[ 2 

S(K + k)/> _ tiC5 k21nk (11) 

In (11) we have already taken the limit a ~ 0. The final step follows the line 
of the original argument given by Mermin. Both sides of (11) are multiplied 
by a positive Gaussian functionf([K + kl), divided by the volume [A] of the 
box and summed on all k E (27r/L)(~_2) *. Taking the thermodynamic limit 
A'~N 2 we get 

F(O)=of (h(r) + 1)F(r)dr>  f a2k 
IK" e,(k)12lPKl~f([K + k[) 

- flCskZln k (12) 

where F(r) is the Fourier transform of f. 
By restricting the region of integration on the right-hand side of (12) to 

the values of k such that IK. et(k)[ >~ 8 > 0 and using the divergence of 
f d 2 k / -  k21nK, we get that OK = 0 VK r 0, K E 2~r(0_2) *. 

We remark here that using our assumptions on h(r) the left-hand side 
of (12) is finite. 

For the special two-dimensional case we have treated here, our result is 
similar to the one given recently, (7) where it was found with a more general 
approach using the BBGKY hierarchy that if the truncated two-point 
function [different from our h(r)] has a clustering of the type [p r(x 1, x 1 + r)] 
< (1/r3)Vx~, then a crystalline order in the two-dimensional jellium is not 
possible. 
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